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We study the hysteresis effects in an Ising system in an external field rotating in the transverse plane,
the latter introducing nontrivial quantum effects. The rate equations for the components of magnetiza-
tion are derived in the mean field approximation by using a microscopic system-plus-reservoir approach.
The area of the hysteresis loop is obtained by solving these equations numerically, and its scaling
behavior with respect to temperature (T') and strength of the external field (I'") is studied.
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I. INTRODUCTION

When an external field applied to a system is sinusoidal
in time, the response is not instantaneous but delayed,
leading to hysteresis, which is a typical nonequilibrium
phenomenon. At a rudimentary level, hysteresis mani-
fests itself as the competition between experimental time
scales, determined by the frequencies of the applied per-
turbation and internal time scales, which are governed by
relaxation phenomena, activated rate processes, decay of
metastable states, and so on. Since metastable states
occur quite naturally in connection with first-order phase
transitions, hysteresis is particularly noticeable near such
transitions and is often used to mark their onset [1].
While the phenomenon of hysteresis is intrinsically classi-
cal, our interest here is to study its occurrence in quan-
tum systems, especially as the latter are characterized by
new routes to relaxation. Thus a quantum system has ad-
ditional time scales associated with tunneling, which can
link different minima of the free-energy surface. In this
paper, we study such a quantum model in the context of
hysteresis, in which we have to consider the competition
of the probe frequency with not just heat-bath-induced
relaxation rates but with tunneling frequencies as well.

As far as hysteresis in classical systems is concerned,
there have been several recent attempts to provide a satis-
factory statistical mechanical treatment. In most of the
model studies, the scaling of the hysteresis loop area with
the probe frequency and the temperature as well as the
evidence of a dynamic phase transition have been the is-
sues of interest. Rao, Krishnamurthy, and Pandit [2]
considered the hysteretic response of a three-dimensional
(¢%)? model with O(N) symmetry in the large-N limit by
numerical integration of the equations of motion. Dhar
and Thomas [3] obtained the corrected solution of the
dynamical equations of Rao, Krishnamurthy, and Pandit.
Rao, Krishnamurthy, and Pandit also studied a two-
dimensional nearest-neighbor ferromagnetic Ising model
by Monte Carlo simulation for different lattice sizes. Lo
and Pelcovits [4] extended this study to large system sizes
and observed the evidence of a dynamic phase transition.
Acharyya and Chakrabarti [5] studied the hysteretic
response and the scaling behavior of Ising models in
d =2-4 dimensions by Monte Carlo simulations. Our
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aim is to extend these studies to appropriate quantum
models and investigate similar scaling phenomena.

It should be clear at the outset that only a single degree
of freedom (in contact with a thermal bath, of course) is
sufficient for observing hysteresis. This is evident from
the recent work of Simon and Libchaber [6] in which a
single Brownian particle is constrained to move in a
double-well (mechanical) potential subject to an external
sinusoidal bias [7]. However, the real interest in hys-
teresis, perhaps due to its historical development in the
context of magnetic domains, lies in systems that show
cooperative phenomena of many degrees of freedom ac-
companied by phase transitions. The simplest statistical
mechanical system that exhibits cooperative as well as
quantum effects is described by an Ising model in a trans-
verse field. This model has been rejuvenated in recent
years by its physical realization in a variety of condensed
matter systems. Two prominent examples are (i) hydro-
gen bonded ferroelectric crystals such as KH,PO,,
known as KDP, in which the two available sites for the
proton in the O—H - - - O bond are mapped onto the two
states of an Ising spin o, ==1; the transverse field then
mimics the tunneling of the proton between these two
sites [8]; and (ii) rare earth magnetic systems such as
LiRF, (R stands for rare earth) in which an externally
applied field transverse to the axis of symmetry of the
crystal field lifts the degeneracy of the lowest Kramers
doublet [9]. Motivated by these experimental possibilities
as well as the previous theoretical analysis of hysteresis in
Ising models, as mentioned in the preceding paragraph,
we base our present study of hysteresis on an Ising model
that is subject to a sinusoidally varying field in the trans-
verse plane. We may suggest, for the purpose of possible
verification of our results, that a time-varying field can be
created in the laboratory either by pressure modulation
in the KDP crystal or by simply applying an oscillatory
magnetic field to the rare earth system of LiRF,.

In the present paper, we imagine that our transverse
Ising system is in contact with a thermal bath and adopt
a microscopic system-plus-reservoir approach in order to
bring out the irreversible effects of the bath on the
dynamical evolution of the system variables, i.e., the
components of the magnetization, in the case at hand.
The coupling between the system and the reservoir is
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chosen such that the kinetic equation of motion of the
magnetization, in the absence of the transverse term, is
the same as that obtained in the Glauber model [10]. We
then employ a mean field approximation directly in the
microscopic Hamiltonian and derive the rate equations
for the components of the magnetization. This is in con-
trast to a recent approach to hysteresis in the transverse
Ising model by Acharyya, Chakrabarti, and Stinchcombe
[11] (referred to as ACS henceforth). ACS begin their
study from phenomenological rate equations, which are
solved by numerical and approximate analytical tech-
niques. Our derived rate equations turn out to be
different from the phenomenological equations of ACS
and we make appropriate comments where necessary,
highlighting these differences. We then obtain the scaling
exponents of the hysteresis loop area as a function of tem-
perature T, the probe frequency w, and the amplitude I'
of the transverse field.

The paper is organized as follows. In Sec. II, the basic
model Hamiltonian is discussed and its mean field limit
obtained. Various terms describing the interaction with
the heat bath are also assessed. We then obtain in Sec.
III the rate equations treating the rotating transverse
field as a small perturbation to the combined system of Is-
ing spins plus the heat bath using the linear-response
theory (LRT). Next, in Sec. IV we obtain a master equa-
tion for the complete density matrix in the presence of
large quantum fluctuations (LQFs), using a cumulant ex-
pansion scheme that treats the system-bath interaction
perturbatively, and rewrite the corresponding rate equa-
tions. Numerical results, summary, and concluding re-
marks are included in Sec. V.

II. MODEL AND FORMALISM

A. The Hamiltonian in the mean field approximation

The Hamiltonian describing the Ising model composed
of N interacting spins in a rotating transverse field may
be written as

H=—3J,0,0,,—TIcos2ot 3 0,;,—I'sin20t 3 o
ij i i

yi»

(1)

where J;; is the interaction strength between spins i and j,
o’s are the Pauli matrices, and T" is the strength of the
transverse field rotating with frequency w. The rotating
field selected as above introduces an x-y symmetry in the
Hamiltonian in addition to making it quantum mechani-
cal. In the mean field approximation, the Hamiltonian
can be expressed as

H;~—ho,—T,(t)o,—T,(t)a, , (2)

where the site-independent mean field h=3;J,(0,;),
', (t)=T cos2wt, and I, (£)=T sin2wt.

We motivate our study of hysteresis through a phase
diagram corresponding to the static Hamiltonian

Hy,=—ho,—To, . (3)

In the mean field limit [12] the equilibrium solution of the

1437
magnetization corresponding to Eq. (3) is given by
m, = Ltanh(ﬁh0 ) (4a)
ho
and
_ k
m,=-——tanh(Bh,) , (4b)
ho

where i, =V h2+T2. The phase diagram of this model
indicating the transition from the ferromagnetic to the
paramagnetic regime with regard to m, as the order pa-
rameter is shown in Fig. 1. It is clear that disorder can
be accentuated by varying either the temperature or the
strength T" of the transverse field as the latter has the
effect of tilting the magnetization away from the z axis.
The presence of oscillations increases the values of I,
and T, but maintains the qualitative features of the static
phase diagram. The effect of oscillations is discussed in
detail in Sec. V. Our study of hysteresis encompasses re-
gions on either side of the phase transition line in the
presence of oscillations.

In order to motivate the mathematical formalism to
study the kinetics of the model, we first consider a time-
independent Hamiltonian in the absence of the transverse
field

H,=—ho, . (5)

We comment here that even in the presence of a time-
dependent transverse field, we can still arrive at an equa-
tion resembling Eq. (5) by appropriate rotations in the
spin space and use the formalism developed below. This
will be discussed in detail in Sec. IV.

The Hamiltonian in Eq. (5) describes the reversible dy-
namics of the system only. In order to introduce kinetics
into the model, we imagine that the spin system is in con-
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FIG. 1. Phase diagram of the Ising model with a transverse
field in the mean field approximation indicating the ferromag-
netic (FM) to paramagnetic (PM) transition.
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tact with a heat bath that drives thermal fluctuations into
the system. It is customary to imagine that the dynamics
arises from additional coupling terms to the heat bath
that are off diagonal in the representation in which o, is
diagonal. This is then in the spirit of the kinetic Ising
model of the Glauber type. The physical meaning of the
Glauber terms is evident. They cause spontaneous spin
flips, which in the context of hydrogen-bonded ferroelec-
trics mimic the hopping of the hydrogen or the proton
from one site to another in the O—H - - - O bond while in
the context of lithium rare earth ferrites, they represent
transitions within the ground-state doublet mediated by
spin lattice relaxations. Motivated by our preceding
comments, we generalize the Hamiltonian as in Eq. (5) to

H,=H,+V+Hy , 6)

where Hp is the bath Hamiltonian and V describes the in-
teraction between the spin subsystem and the heat bath.
In accordance with our stated objective, we assume the
following type of interaction between the spin subsystem
and the heat bath:

v=gb(o,+o,). @)

In Eq. (7), b is an operator that acts on the Hilbert space
of the heat bath and g is a multiplicative coupling con-
stant. The specific form of the interaction is chosen so
that the coupling of H; with the heat bath is purely off di-
agonal and results in an appropriate dynamics in the limit
when the transverse field is zero.

B. Mathematical formulation

As a first step towards obtaining the required rate
equations, we derive a master equation for the density
matrix. We start from the Liouville equation of motion

4B — it Hyp(0)], ®)

where H, is the total Hamiltonian defined in Eq. (6). In
J

ps(t)=eViH5tTr,,

expr [-ifo’dt'V,X(r') ] ]p(O) }e'

e—iHst

I

The angular brackets { ) refer to an averaging over the
bath degrees of freedom. In writing Eq. (17) we have as-
sumed that the density matrix can be factorized as

p(0)=p,@p, (18)

and have used the cumulant expansion theorem [13]. The
physical ground for writing Eq. (18) is that at =0, the
spin system is assumed to be decoupled from the heat
bath; it is at that instant that the perturbation V, which
couples the spin system to the bath, is switched on. The
subsequent time evolution of p,(0) is what we are in-
terested in.

iH_ t

the interaction picture the evolution is governed by

dp;(t)
i—!ZT—Z[VI(t),pI(t)]=VIX(t)pI(t) : ©)
where

pr(t)=expli(H +Hpg)t p(t)exp[ —i(H,+Hpg)t] (10)
and

Vi(t)=expli(H,+Hpg)tVexp[ —i(H,+Hpg)t], (11)

V;*(t) being the Liouville operator associated with V,(z).
The solution of Eq. (9) can be formally written as

ps(5)=[expy [—ifO’V,X(z'mt'] ]p,(O) , (12)

with expr denoting a time-ordered series with the opera-
tors for the latest time at the left. Note that at =0,
pr(0)=p(0). Combining Egs. (10) and (12), we have

P(t)=e_i(HS+HB)t[ [expT [—ifo’dt'V,Xu')] p(O)]

REALAY

X (13)

The rate equations for magnetization m, (u=x,y,z)
are obtained from

dm
where
m,=Tr[p(t)o,] (15)

and p(?) is given in Eq. (13). However, it is easier to work
in terms of a reduced density matrix for the spin system
alone:

ps(t)=Tr,p(t) , (16)

where Tr, denotes a trace operation over the degrees of
freedom of the heat bath. Thus, from Eq. (13),

expy (=i [l (va) = [ar [ avEa vy, Jpso ™" (17

[
Assuming invariance under time translation, we can

write

—iHt

ps(t)=e

X

expr [—f0'<t—¢)< Vi (r)V4(0))dt

o st

X p,(0) (19)

There has been an additional assumption in writing Eq.
(19), viz.,
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<V1x(t’)>=<V1x(0)>=(V1x>=0. (20)

This can always be ensured by an appropriate choice of
the coupling term V. The assumption Eq. (20) is necessi-
tated by the physical requirement of the model that at a
large enough time, the system should equilibrate to a situ-
ation governed by the Hamiltonian H; alone. Using a
short-time approximation for the bath correlation func-
tions of the kind {5(7)b( 0)), viz., that correlation func-
tions die out after a time short compared to any other
“times” of physical interest in H,, the upper limit in the
integrals in Eq. (19) can be extended to «. This enables
us to further write the equation of motion as

d ..
dtps(t)_ l[Hs’p:(I)]

—e ! [fo“’dﬂ VA (rV(0))

xe'™'p (1) . 1)

This is the desired master equation. We make no attempt
to calculate the bath correlation function in Eq. (21). In-
stead we simply parametrize it in terms of a phenomeno-
logical relaxation rate by making use of Kubo relations as
discussed in Appendix A. We can now derive the equa-
tions of motion using Eqgs. (14) and (21).

III. LINEAR-RESPONSE THEORY

As a first step towards our understanding of the effect
of quantum transitions in the presence of the transverse
field on spin relaxation we consider the linear-response
regime in which the transverse field is a small perturba-
tion to the Ising system. The total Hamiltonian in this
case is hence given by

Hy,=H,+V+Hg+H,, (22)
where
H,=—ho,, (23)

H,=—T cos(2wt)o, —T sin(2wt)o (24)

y ’
and Hy and V are bath and interaction Hamiltonians, re-
spectively. The interaction V as defined earlier by Eq. (7)
ensures that the coupling term is completely off diagonal
with respect to H; leading to the correct Glauber kinetics
in the absence of the transverse field.

The relaxation dynamics of the components of magne-
tization can be obtained from the equation of motion of
the reduced density operator defined in Sec. IIB [Eq.
(21)] as

dm,, _

dp(t)
et LAl Bl

dt

(25)

When the transverse field is zero, the reversible dynamics
of the system is governed by H; alone. Using Eq. (21)
and after some lengthy algebra involving the matrix rep-
resentation of Liouville operators and regrouping of
terms as correlation function of heat bath operators (Ap-
pendix A), we arrive at the rate equation

1439
dm,
2 =—2A[m,—tanhfh], (26a)
dm,
P7al —Am, +2hm, , (26b)
dm,
o —Am,—2hm, . (26¢)

The presence of a perturbation in the form of a trans-
verse field contributes additional terms, linear in T, to
these dynamical equations [Eq. (26)]. In the linear-
response regime, the time-dependent contribution to the
Hamiltonian (H,) is presumed to affect only the reversi-
ble dynamics of H; and does not affect the relaxation
governed by the coupling terms. That is, the transverse
field being small is assumed to have no effect on the heat
bath dynamics. Using the formalism developed in Sec.
II B, it is straightforward to see that with the additional

contribution, the equation of motion is
dp,(t) .
~=—ilH,p,(1)]

I N E Gl (I B XO)

—i[H,,p,(2)] . 27)

The first two terms correspond to relaxation in the pure
Ising system [leading to Egs. (26)] while the last term is a
consequence of the perturbing transverse field. The con-
tribution to dynamics due to these terms can be calculat-
ed easily using the properties of Pauli matrices. The re-
sulting equations governing spin relaxation in linear-
response theory (LRT) are

dm,

= —2A[m,(t)—tanh(Bh)]
dt

=20, (£)m,(£)+2T (t)m, (1) , (28a)

dm,

=—Am,(t)+2hm (¢t)—2L ,(t)m,(2) , (28b)
dt x Y Y z
dm,
o =—Am,(t)—2hm,(£)+2L (¢)m,(¢) . (28c)

In the classical limit (I', =I", =0), the above equations of
motion reduce to the well known mean field equations for
Ising dynamics [cf. Eq. (26)]. We note here that the re-
laxation rate associated with m, is twice that of m, and
m,. This is attributed to the choice of our interaction
Hamiltonian and the x-y symmetry therein.

IV. RATE EQUATIONS FOR ARBITRARILY
LARGE TRANSVERSE FIELDS

In this section we consider the situation in which quan-
tum effects dominate because of large values of the
strength IT" of the transverse field. It is well known that
large quantum fluctuations (LQFs) can destroy the or-
dered phase of the Ising system, be it a model for a fer-
romagnet, a ferroelectric, or a spin glass (cf. Fig. 1). The
study of nonequilibrium response close to a phase-
transition line in such a quantum spin model poses an in-
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teresting problem in this context and, to our knowledge,
there have been no attempts in this direction. However,
the assumptions of the linear-response theory are no
longer valid if the strength of the transverse field is
“large” and the effect of higher-order terms in I" must be
included in the rate equations [Eq. (28)] derived earlier in
Sec. III. Thus motivated, we now treat the transverse
field as a part of the subsystem Hamiltonian [as in Eqgs.
(1) and (2)] and rederive the rate equations to study the
effect of large quantum fluctuations on the spin relaxation
phenomenon. Our starting point once again is the total
Hamiltonian

Hy=—ho,—T'(o,cos20t +o,sin2wt)+V+Hp . (29)

As the transverse coupling is to be treated exactly it is
evident that the Hilbert space of the subsystem has to be
enlarged now in order to incorporate the terms propor-
tional to both 4 and I" within the Hamiltonian H,. It is
expected then that the interaction V with the heat bath
ought to be such as to induce relaxation in both these
terms. Before we address the issue of what should be the
minimal form of ¥V to bring out the requisite physics, we
consider the static limit (o0 =0) of Eq. (29)

Hy=—ho,—To,+V+Hy . (30)

We may emphasize that it is quite appropriate to examine
the static case first in order to motivate the form of ¥ be-
cause after all, the accessible frequencies () in the labo-
ratory are at most of the order of a few kilohertz,
whereas the heat-bath-induced rates (triggered through
V) are much higher. For instance, proton jump frequen-
cies in KDP or the phonon frequencies (in magnetic sys-
tems) are > 10'2 Hz.
The subsystem Hamiltonian corresponding to Eq. (30)
is
H=—ho,—To, . (31)

This Hamiltonian can be easily diagonalized by a rotation
S, about the y axis:

S,=exp |— éayarctan% (32)
The resultant Hamiltonian reads
H,=—hoo,, ho=Vh>+T?. (33)

Equation (33) has the same form as Eq. (5) and therefore
it is natural to choose, in the rotated frame, a coupling of
the type given in Eq. (7), that is,

V=gblo,+0,). (34)

In the new representation of the rotated quantization
axis, ¥ is entirely off diagonal and therefore responsible
for inducing Glauber kinetics. It is also easy to see that
in the original laboratory frame, the corresponding form
of Vis

v=gb hi(hax—raz)dray . (35)
0

We may comment in passing that the subsystem Hamil-
tonian in Eq. (31) is like the mean field version of an an-
isotropic Heisenberg model and this symmetry is indeed
reflected in the coupling to the heat bath, as in Eq. (35).

We now return to the full time-dependent problem of
Eq. (29). The subsystem Hamiltonian (containing the os-
cillatory terms) can now be diagonalized by first a rota-
tion ot about the z axis:

U,=exp(—ioto,), (36)
followed by the transformation S, [cf. Eq. (32)], which

now reads

— i r
S, =exp —5ayarctanm . (37)

The transformed Hamiltonian is

H,=—hgo,, (38)
where now
ho=V(h+0)+T?. (39)

Equation (38) can be interpreted to represent the interac-
tion of a spin with a magnetic field that is the resultant of
a field I" along x and a field A reinforced by a pseudofield
o generated in the rotated frame, along z. Because of this
and also our earlier remarks following Eq. (30) about the
time-scale separation, we assume V¥ to be given by [cf. Eq.
(35)]

(h+w) _—F_Uz+0y

v=gbh
g h() Ux ho

(40)

What does this imply for the form of ¥ in the rotated
frame? Note that

v=(u,s,)"'v(u,s,), 41
which works out to
P=gblo, |1+ sin20)—2 |22 | sin*(wr)
ho ho
+o, [1=2sinor)— [ A2 \sin(201)
0
+o,—— |sin(2wt)—2 sin*(wt)

0

(42)

However, we are only interested in the @ =0 limit of the
coupling with the heat bath, in view of our earlier as-
sumed timescale separation. Another formal way of say-
ing the same thing is that we are working within the Mar-
kovian limit of heat-bath-induced relaxations [see our
comments preceding Eq. (21)]. Hence, in the Markovian
approximation, we have

V=gb(o,+0,), (43)

which matches with the earlier forms [cf. Egs. (7) and
(34)]. Collecting all the above-mentioned facts together,
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the full time-dependent problem reduces to a time-
independent one in the rotated frame, governed by the
Hamiltonian

Hy,=H+V+Hy, (44)

where H, and V are given by Egs. (38) and (43), respec-
tively.

We now rederive the rate equations to study the
changes in the components of magnetization in the for-
malism described and used in Secs. IT and III. The equa-
tion of motion of the reduced density matrix is Eq. (21) of
Sec. II with H; now defined by Eq. (29). After lengthy
algebra involving the properties of Pauli matrices, re-
grouping of terms and using a short time approximation
for the bath correlations characterized by A (see Appen-
dix B), we arrive at the following rate equations for m in
the LQF regime:

dm, r .
=m, | —A— (h +wo)cos2wt —2T sin2wt
dt h{
FZ
+m, ~)r—7»—2cos22a)t
hy
r2
+m, +2h——kFcos(2wt)sin(2wt)
0
r
+2A . cos(2wt) tanhfBhy , (45a)
0
amy _ AL sin(201) cos(200) — 2k
2 M h%sm wt) cos(2wt
r’. .,
+m, | —A——sin20t —A
h2
0
+m, 2rcos2wz—x1h;r2‘° I sin2ot
0
r ..
+2)»7l——sm(2a)t)tanh[3’h0 , (45b)
0
dm, 2
=m, | —2A+A— | +2I sin(2wt)m, ()
dt h3
—2T cos(20t)m, (10+21 | 252 | tanhgh,
0
—A h+2a) ]mxcos2cat
ho
—AT h:z“’ }mysinZ(ot . (45c)
0

It is easy to see that these equations reduce to the rate
equations obtained using linear-response theory in the
limit of “small” values of A, T, and T (as compared to A
in appropriate units). Terms of order I'? and AL start
contributing significantly as the phase transition line is
approached at all values of T <T,, T, being the critical
temperature as defined in the =0 or the static limit.

The significance of these contributions is evident from the
numerical results discussed in Sec. V on scaling of the
hysteresis loop area with ', w, and T.

It is difficult to compare the rate equations [Eq. (45)]
with those proposed by Acharyya, Chakrabarti, and Stin-
chcombe [11], viz.,

dm h

™ m-+[tanh(h /T)] nl
7 being the macroscopic relaxation time that has been as-
sumed by ACS to be the same for the longitudinal and
transverse components of magnetization. They have used
heuristic and phenomenological arguments in writing Eq.
(46), which is similar to the rate equation for a classical
Ising model with Glauber kinetics. However, inclusion
of a time-dependent field inside the argument of the tanh
function, which arises in the theory from detailed balance
factors as shown above, is of questionable basis. Further-
more, such assumptions may lead to unphysical results in
the 7"—0 limit when quantum effects are important. The
only common feature of our Eq. (45) and ACS’s Eq. (46)
is that both yield correct equilibrium solutions for m,
and m,, when 0 =0 [cf. Egs. (4a) and (4b)].

(46)

V. NUMERICAL RESULTS, SUMMARY,
AND CONCLUSION

We numerically solve the coupled dynamical equations
for the three components of magnetization in the LRT
regime [Eq. (28)] and the LQF regime [Eq. (45)] subject to
the  initial condition that m,(0)=1 and
m,(0)=m,(0)=0, using the predictor corrector [14]
method. In order to incorporate interaction effects, we
replace the effective field # by J(0)m, [later taking
J(0)=1], as in any mean field calculation. We compute
the hysteresis loop area that is measurable in the labora-
tory:

A:fOTm.dF____foT{mde"x(t)-i—mdey(t)} . @)

In Eq. (47), the parameter 7T is given by T=m/w. The
loop area, defined in Eq. (47), is a speciality for the quan-
tum spin model as it relates the energy dissipated in the
transverse plane. It is natural then that we look for pos-
sible power law scaling in this quantity in order that data
points for different parameter values can be made to fall
on the same master curve [15].

In Fig. 2, we compare the scaling of area with respect
to I' for LRT (open circles) and LQF (filled circles) for
T=0.5 and two different relaxation rates: A=0.1 [Fig.
2(a), @=5.0] and A=5.0 [Fig. 2(b), ®=0.1]. The data in
Fig. 2(a) indicate a power law scaling

A<, (48)

where a~2.031+0.03 and 2.04%0.03 for the LRT curve
and the LQF curve, respectively. The data show a kink
at I', = 1.3, perhaps indicative of a dynamic phase transi-
tion at this value of w, which needs further investigation.
For large values of A [Fig. 2(b)], the data indicate a
power law fit with a=~1.95+0.05 and 2.09+0.05 for
LRT (open circles) and LQF (filled circles), respectively,
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FIG. 2. Scaling of area A4 with respect to the strength of the
transverse field I' as computed in the linear response regime
(open circles) and the large quantum fluctuation regime (filled
circles) for two different values of the relaxation rate: (a) A=0.1
and (b) A=5.0. The values of the exponents have been dis-
.cussed in the text of Sec. V.

when I' <T',. However, for large values of I', the AT
contribution becomes significant and leads to the break-
down of the LRT. From the upper curve of Fig. 2(b) it is
clear that the breakdown of LRT occurs for values of T
larger than unity. In this regime, the data points based
on LRT are extremely erratic and do not seem to con-
form to any particular scaling behavior. In the LQF re-
gime, on the other hand, the dependence of area on I'
still indicates a power law fit, albeit with a new exponent
a~0.6410.02 [notice the change in the slope in the
lower curve of Fig. 2(b)]. Thus Fig. 2(b) justifies our
motivation for calculating contributions to the rate equa-
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tions beyond the LRT regime.

The scaling behavior of area with respect to tempera-
ture (7T) is indicated in Fig. 3. For high values of T, al-
though the data for the LRT regime is regular, it could
not be fitted to any known scaling form. On the other
hand, the data for the LQF regime shows a power law
scaling

A~T78 (49)

with f=0.12+0.02. The loops get thinner as tempera-
ture increases and eventually go to zero when spin fluc-
tuations become large and the system becomes paramag-
netic. We plot the scaled area A’= 4 /(I'°T"'"P) against
o in Fig. 4 for six different curves corresponding to
different T and T values (see the figure caption). This
type of data collapse justifies usual attempts to encode
different experimental observations in one equation and is
the principal significance of scaling [15]. The data indi-
cate that the area initially increases with o, goes through
a maximum, and decreases to zero as @ approaches
infinity, when the system can no longer respond to the
fast varying field. However, the scaled area A4’ is skewed
as a function of w and is not a Lorentzian as seen by ACS
[11]. This is not a serious issue as the Lorentzian form
found by ACS is evidently an artifact of their assumed
form for the phenomenological rate equations.
Summarizing, we have considered in this paper the
hysteretic response in an Ising model in the presence of
quantum effects introduced by an oscillating transverse
field. The equations of motion have been obtained by
coupling the quantum subsystem to a purely dissipative
heat bath. We observe two relaxation rates correspond-
ing to the z and x(y) components of magnetization. The

-6.20 —:
-6.40
< b
£ 1
-6.60 3
-6.80
1.30 1.50 1.70 1.90 2.10 2.30
InT

FIG. 3. Variation of area A with respect to temperature T
(T'>1.0 in units of J) in the linear response regime (open cir-
cles) and the large quantum fluctuation regime (filled circles).
While the data in the linear response regime do not exhibit a
power law, the other data indicate a power law variation with
an exponent 8=0.1240.02.



Substituting (A9) in (A7) we get
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0.3 3 Work in this direction is in progress and is planned to be
presented in a forthcoming paper.
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§ APPENDIX A
0.03 é We start from the equation of motion for the reduced
density matrix corresponding to the Hamiltonian given
i by Eq. (23):
0.0C_ e e y =q- :
0.C0 2.0C 4.CC 6.CC 8.C0 10.C dps(t) '
w T=—I[Hs7ps(t)]
FIG. 4. Scaled area A’ (= 4 /T'°T"~#) as a function of o for _ —iH pw x x +iH ¢t
six sets of data corresponding to different values of the tempera- € f 0 dr( ViV (0) e ps(t) s
ture and the strength of the transverse field: I'=0.1 (%), (A1)
r'=0.3 (X), and T=0.5 (Q) (all for T=4.0); I'=0.1 (0),
'=0.3 (M), and I'=0.5 (O) (all for T7=6.0). Throughout, dm,(t) dp,(t)
A=5.0. i) ar =Tr, P (A2)
‘ , =—Tr,e "Re p,(t)o, ], (A3)
scaling exponents of the hysteresis loop area have been
obtained. We find a power law scaling with respect to where
temperature (7) and quantum field (I'). As a function of o x x
frequency (w), the area goes through a maximum and R= f 0 ar{(V(r)Vi(0)) , (A4)
then reduces to zero for very large values of w. We con- dm,(t)
clude with the remark that this approach can be success- ar =—Tr,[Rps(t)o,] . (AS5)
fully used to study hysteresis in more complicated disor-
dered spin systems such as a quantum spin glass [9,16]. We first evaluate Rp,(¢)
|
Rps(t)=fowdTTrb({VI(T),[VI(O),pbps(t)]}) (A6)
=fo“’dTTr,,{V,(T)V,(O)p,,ps(t)—V,(T)p,,ps(z)V,(O)
=V (0)ppps (O)V (T)+pyup ()V (0 V (1)} . (A7)
Now
VI(T)zei(Hs+HB)‘rV(O)e—i(HS+HB)T (A8)
=%g3(r)[a+e—2"'"+a_e2"hf]+—217g5(r)[a+e“2""f—a_e2"hf] . (A9)

2 o0 o~ ~ . . ~ ~ . .
Rps(1?)=-g2—f0 dr[{b(1)b(0)) (o o_e *"+o o e?™)p (t)+p (t){b(0)b(T) o 0_e 2 "+o o eTh)

S

—
+(BB(1)) (04— _)p,(t)o e

>

(0)6(1)) o4 +0o_)p, ()0 e 2T+ o _e2hT)

—2iht__

o,_eZih‘r)

—{(b(1)b(0)) (o e 2 +o _e* ) (1) o, +o_)

>

+{(b(1b(0)) o e ¥—0 _e¥ ) (1) o, —0_)] .

(A10)
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The bath correlation functions can be parametrized in terms of a phenomenological relaxation rate A using the Kubo

relation
7 dre™™(B(mb(0))=eP [* dre = (b5(1)5(0)) . (A1)
Using (A11) we can write
® ikt ( (Vb e P2

J 7 dre=tB@b0) =r—g——pn (A12)

where

A= [7 drle™ +e~")(b(1)5(0)) (A13)

= [ dre™(b(m5(0)) +(B(0)b(7))] . (A14)
Using Egs. (A10)-(A14), defining

m,(t)=Tr,[p,(t)o,], (A15)

and using the properties of Pauli spin matrices, Eq. (A5) reduces to

mZ

o = —2A[m,—tanhfBh], (A16)
which is the same as Eq. (26a) in the text

. dmy dp;

(i) ar =Tr, 4 O (A17)
=Tr,(—i{[—ho,,p,(D]o,}—(e "Re™'p,(t)0,)) (A18)
=2hm, —Tr,[Re"*'p,()oe "*'] (A19)
=2hm, —Tr,[Rp,(t)e g e "], (A20)

|
where Therefore
5 (t)= iHt (t) —iHt (A21) dmx(t)
psiti=e —psitle : o = —hm(0+2hm, (A28)
Therefore L. .. .
which is Eq. (26b). Similarly, it can be shown that
dm,
=2 — D, 2ht)+ in(2 . dm (1)
7 hm,—Tr [Rp,(t)[0cos(2ht)+0 ,sin(2ht)] ”;vt — —Am, (1) —2hm, (A29)

(A22)

Repeating steps (A8)—(A14) and simplifying using the
commutation rules for the Pauli spin matrices, it is easy
to show that

dm,
7 =2hm,—A(0, Ycos(2ht)+A(c, )sin(2ht) , (A23)
where
(0,)=Tr,[p,(t)a ] (A24)
=Tr,[e"p,(t)e o ,] (A25)
using (A25),
(o) =m,cos(2ht)—m,sin(2ht) , (A26)
and
(0, )=mcos(2ht)+m,sin(2ht) . (A27)

which is Eq. (26c) in the text.

APPENDIX B
Rate equations for LQF

We once again start from the equation of motion of the
reduced density matrix corresponding to the Hamiltonian
of Eq. (44):

L ($)=ilH,yp, (1]
—e [ Tdr(P (P X 0de "y, BY
where
ps(1)=Tr,{p(1)} and p(1)=S,'U p(1)U,S, (B2)

with the rotations U, and S, as given by Egs. (36) and
(37) in the text.
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Using g, (¢ )=eiHstps(

HYSTERESIS IN A QUANTUM SPIN MODEL

—iH_t
tle °,weget

d _ P e Txin e
Al fo dr{ VX7 =0))p,(1) ,

which is of the same form as (A4).
We first evaluate the three components of magnetiza-

tion: (i)

m,()=Tr{p(1)o, ]=Tr[p(1)S5 o, Sy ]

_hto
ho

+({o,(1))sin(2h,1)]

(0,(6)) == [{ (1) cos(2hot)
0

1445

(B3a)

where {0 ,(2)) =Tr,[p,(t)0,(0)]; similarly, we get (ii)

m, (1)=Tr,[p,(1)S, U '0,U,S, ]

iH t

=Tr, [p‘s(t)eiH‘tSy_le'ax UzS,e !

= (o, (1)) | L cos(2hyt )cos(2et ) +sin( 2k o Jsin(20t)
0
h+to . .
+{(o, 1)) p sin(2At Jcos(2wt ) —cos(2hyt )sin(2wt )
0

and (iii)

m,(t)=—(o.(1)

+{o,(1))

+w

sin(2hyt )cos(2wt ) — h sin(2wt )cos(2ht)

0

cos(2hyt )cos(2mt )+ hto

sin(2wt )sin(2hyt)

0

In terms of m#(t), (O'#(t)) can be written as

<az(m=@mz(z)+h£[mx(t)cos(2m)+my(t)sin(2mt)] :
0 0
__Tr
(0,(t))=—=—m,(t)cos(2ht)
ho
(1) | 2L cos(2h 1 Jcos(201 )+ sin(2h, 1 )sin(201)
0
h+o . .
+m, (1) cos(2hyt )sin(2wt ) —sin(2hyt )cos(2wt )
0
(0,(0)=—-m, (1)sin(2ht)
y hO z 0
hto . .
+m,(t) 7 sin(2ht )cos(2wt ) —cos(2hyt )sin(2wt )
0
hto . .
+m,(¢) sin(2ht )sin(2wt ) +cos(2hyt )cos(2mt )

0

+{a,(1)) L-cos(201) ,
hg

+<oz(t))Lsin(2mt) .

ho

(B3b)

(B3c)

(B4a)

(B4b)

(B4c)

The rate equations for the three components of magnetization [Eq. (33)] can be obtained by differentiating Eq. (B3)

and making use of Egs.
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